Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
2.
Iran J Med Sci ; 48(1): 43-48, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2205676

ABSTRACT

Background: In December 2019, an outbreak of pneumonia caused by the novel coronavirus disease 2019 (COVID-19) became a pandemic and caused a global health crisis. This study evaluates the immunogenic potential of the Mediterranean fever (MEFV) gene in patients with COVID-19. Methods: A cross-sectional study was conducted from March to April 2020 in various COVID-19 referral centers in Ardabil, Iran. Blood samples of 50 hospitalized patients with confirmed COVID-19 were evaluated for MEFV gene mutation using the amplification refractory mutation system polymerase chain reaction (ARMS-PCR) and Sanger sequencing. Statistical analysis was performed using SPSS software, version 22.0. Results: Mutations of the MEFV gene were found in 6 (12%) of the patients. All mutations were heterozygous, and no homozygous or compound heterozygous forms were detected. The total mutant allele frequency was 6% and the carrier rate was 12%. The most common allele of the MEFV variant was E148Q, detected in 3 (6%) patients. No mutant variant of the MEFV gene was detected in deceased patients. None of the mutation carriers had familial Mediterranean fever (FMF) symptoms or a family history of FMF. Conclusion: MEFV gene mutations may have immunogenic potential in patients with COVID-19. A preprint version of this article has already been published at https://www.researchsquare.com/article/rs-69373/latest.pdf.


Subject(s)
COVID-19 , Familial Mediterranean Fever , Humans , Cross-Sectional Studies , Pyrin/genetics , Mutation , Familial Mediterranean Fever/epidemiology , Familial Mediterranean Fever/genetics
3.
Inflammation ; 45(5): 1849-1863, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1990700

ABSTRACT

The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs have shown promising effects in preventing or treating COVID-19, but due to the development of mutant strains through rapid viral evolution, urgent investigations are warranted in order to develop preventive measures and further improve current vaccine candidates. Positive-sense-single-stranded RNA viruses comprise many (re)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form an important first line of defense against these viruses. Flexibility in the genome aids the virus to develop multiple strategies to evade the innate immune response and efficiently promotes their replication and infective capacity. This review will focus on the innate immune response to SARS-CoV-2 infection and the virus' evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Since interferons have been implicated in inflammatory diseases and immunopathology along with their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome pathway, and release of its products including the pro-inflammatory cytokines IL-6, IL-18, and IL-1ß. This predictive view may aid in designing an immune intervention or preventive vaccine for COVID-19 in the near future.


Subject(s)
COVID-19 , Inflammasomes , Antiviral Agents , COVID-19 Vaccines , Humans , Immunity, Innate , Inflammasomes/metabolism , Interferons , Interleukin-18 , Interleukin-6 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin , SARS-CoV-2
4.
Front Immunol ; 11: 574593, 2020.
Article in English | MEDLINE | ID: covidwho-846257

ABSTRACT

Familial Mediterranean Fever (FMF) and COVID-19 show a remarkable overlap of clinical symptoms and similar laboratory findings. Both are characterized by fever, abdominal/chest pain, elevation of C-reactive protein, and leukocytosis. In addition, colchicine and IL-1 inhibitors treatments that are effective in controlling inflammation in FMF patients have recently been proposed for off-label use in COVID-19 patients. Thus, FMF may resemble a milder recapitulation of the cytokine storm that is a hallmark of COVID-19 patients progressing to severe disease. We analyzed the sequence of the MEFV-encoded Pyrin protein - whose mutations cause FMF- in mammals, bats and pangolin. Intriguingly, although Pyrin is extremely conserved in species that are considered either a reservoir or intermediate hosts for SARS-CoV-2, some of the most common FMF-causing variants in humans are present as wildtype residues in these species. We propose that in humans, Pyrin may have evolved to fight highly pathogenic infections.


Subject(s)
Betacoronavirus , Colchicine/therapeutic use , Coronavirus Infections , Familial Mediterranean Fever , Mutation , Pandemics , Pneumonia, Viral , Pyrin , Animals , Betacoronavirus/genetics , Betacoronavirus/immunology , C-Reactive Protein/genetics , C-Reactive Protein/immunology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Familial Mediterranean Fever/drug therapy , Familial Mediterranean Fever/epidemiology , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/immunology , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pyrin/genetics , Pyrin/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL